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Abstract

In current evaluation schemes of semantic segmentation,
metrics are calculated in such a way that all predicted
classes should equally be identical to their ground truth,
paying less attention to the various manifestations of the
false predictions within the object category. In this work, we
propose the Critical Error Rate (CER) as a supplement to
the current evaluation metrics, focusing on the error rate,
which reflects predictions that fall outside of the category
from the ground truth. We conduct a series of experiments
evaluating the behavior of different network architectures
in various evaluation setups, including domain shift, the
introduction of novel classes, and a mixture of these. We
demonstrate the essential criteria for network generalization
with those experiments. Furthermore, we ablate the impact
of utilizing various class taxonomies for the evaluation of
out-of-category error.

1. Introduction

Deep convolutional neural networks (CNN) [15, 16, 19,
31, 33] and more recently transformer-based neural net-
works [9,32,60] pushed the boundary of computer vision and
pattern recognition forward in the past decade, which also
enabled data-driven automated driving in certain scenarios.
Meanwhile, the robustness of the neural networks has be-
come a hurdle to overcome for the serial introduction of auto-
mated vehicles in public traffic, and it is considered as a cru-
cial criterion of driving functions during validation and certi-
fication [21, 22]. Recent work from academia and industry
has emphasized the robustness concern, including anomaly
detection [8, 53], out-of-distribution detection [10, 36] and
open-set classification [23, 34, 68]. Since the real-world driv-
ing environment is complicated and constantly changing,
ranging from weather and light conditions to traffic behavior,
it is essential to ensure that effective features are learned dur-
ing network training so that the networks can be generalized
to a wide range of possible driving conditions.

(a)

(b) (c)

Figure 1. Motivation for category-related semantic segmentation
evaluation: Given the input image (a) from A2D2 dataset [12]. The
tractor is a previously unknown object as the networks are trained
with Cityscapes [7]. While output (b) considers part of the tractor
as building, (c) depicts the object as truck, which is part of the
category vehicle. In this work, we quantitatively evaluate category-
relevant prediction errors as a complement to the IoU metric.

Semantic segmentation plays an essential role in scene
interpretation for automated driving, aiming to assign a class
label to each pixel of the input image from a predefined
class set. However, in the current evaluation scheme, the
difference between whether an occurring classification error
assigns a comparable class (w.r.t. the given use case) or a
critically different class is disregarded. In the real-world
scenario, erroneously assigned class may represent divergent
levels of criticality: Labeling a rider as a pedestrian, for
example, would typically be considered a less critical and
more understandable confusion than mistaking the rider for
a static wall – while established metrics for the performance
of neural networks would assign equal scores to both results
as they represent false predictions, as shown in Fig. 1.

To the best of our knowledge, previous work of the se-
mantic segmentation evaluation metric mainly concentrated
on region-based agreement of the predictions with ground
truth [66], while this type of evaluation is not sufficiently
addressed, which distinguishes between errors within com-
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parable classes, based on a given hierarchy, and errors across
critically distinct classes. Therefore, we aim to introduce
a novel evaluation metric for semantic segmentation in the
context of automated driving, emphasizing prediction errors
based on an equivalence relationship that can be derived from
the class taxonomies of the datasets. Beside that, with the
new evaluation metric, multi-dataset semantic segmentation
can be evaluated with higher flexibility since label remapping
is considered to be intricate, time-consuming, and introduces
ambiguities according to their class definitions [27].

In this work, we differentiate between the definitions
of class and category, where we consider class as the leaf
element of the class hierarchy, while category indicates their
parent nodes, or superclasses. We evaluate some frequently-
used network architectures with three different setups to
evaluate the properties of the neural networks. We perform
our experiments on five automotive-centric datasets that are
frequently used in the research, unveiling the properties and
differences of the models trained by certain datasets. Our
main contributions are as follows:

• Novel evaluation metric: We propose a novel evalua-
tion metric for semantic segmentation that specifically
distinguishes in-category and out-of-category errors,
which also facilitates the evaluation of domain shift and
domain generalization as the proposed metric reduces
the effort needed for a unified label space.

• Variety of experiments: We conduct the experiments
not only in the source domain but also under domain
shift, and with novel-classes, covering a range of ar-
chitectures from classical neural networks to recent
transformers. In addition, we also investigate the im-
pact of exploiting different class taxonomies to address
safety concerns in the automated driving domain.

• In-depth analysis: We analyze the behavior of vari-
ous neural networks, providing new insights from the
neural networks when they encounter underrepresented
or previously unknown classes, which is essential for
safety-critical applications like automated driving.

2. Related Work

2.1. Robustness Evaluation of the Neural Networks

Previous work has shown the challenges of learning ef-
fective features from the training datasets and keeping high
variance for data perturbations [11, 51, 52]. If the input dis-
tribution shifts from the original training set, which can be
frequently observed in real-world applications, abnormally
high softmax confidences may appear, leading to unreliable
predictions [39]. For the evaluation of robustness, models
are frequently trained on a clean source dataset and tested on
another datasets [17, 18], which include corrupted images or
out-of-distribution samples, in a zero-shot fashion without

any adaptation. Most evaluations are based on metrics like
class-wise IoU, accuracy and Dice, which demand predicted
labels matching the ground truth, even when class hierarchy
is explicitly utilized for training regularization [29]. Beside
that, certain architectural characteristics may harm network
robustness, making predictions only trustworthy when input
images are devoid of noise and blur [24]. To enhance against
such disturbances, methods like advanced data augmenta-
tion strategies [55, 61, 62, 64], large-scale supervised and
unsupervised pretraining [5, 45, 48, 70] can be utilized.

Recent research also suggests that transformers exhibit
greater resilience than CNNs when exposed to out-of-
distribution samples [28, 65] or adversarial attacks [37, 42].
However, if a similar training setup is applied, transformers
are not proven to be more robust than CNNs, although their
operating mechanisms are vastly dissimilar with different
focus [1, 37, 57]. Another aspect that is often disregarded
is the availability of the data points during the training pro-
cess [69], as recent work [26,44,58] demonstrated the poten-
tial of robustness when the model is trained with large-scale
cross-domain composite datasets.

2.2. Domain Generalization

Domain Generalization (DG) focuses on learning general
feature representations from the source domain so that the
learned feature representations can handle arbitrary data
distribution, which is not available during training time. Lots
of current research concentrates on image classification [13,
50], while only a small proportion of work focuses on the
semantic segmentation scenario [4,6,20,40,41,43]. Pan et al.
[40] integrated two different normalization layers to ensure
that features are invariant to changes in appearance. The
effectiveness of feature presentation normalization is further
improved with the assistance of domain-variant frequency
analysis [20]. Other approaches have attempted to normalize
global features by removing style-specific information [6]
or using other normalization layers [54]. Data augmentation
methods [43] generate additional training samples with style
transfer models to avoid domain-specific bias. Chen et al. [4]
introduced a contrastive learning pipeline with knowledge
distillation for better generalization.

In semantic segmentation, DG is frequently evaluated by
a sim-to-real setup [14,43] from synthetic datasets like SYN-
THIA [47] or GTA5 [46] to real datasets like Cityscapes [7]
and BDD100k [63]. Although the real-to-real setup seems
to be more natural for real applications, one essential pre-
requisite for multi-dataset learning [30, 56] is to generate an
unified label space, which was demonstrated by Mseg [27],
Kim et al. [25] and proved to be non-trivial [2]. The lack
of a unified label space also decelerates the interest of real-
to-real DG evaluation, which also motivated us to propose a
novel evaluation metric that can simplify the evaluation of
real-to-real domain generalization evaluation.
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3. CER as a Category-Aware Metric

In this section, we define a novel evaluation metric that
specifically addresses inter-category errors. Current evalua-
tion methodologies concentrate on evaluating overlapping
areas between prediction and ground truth if and only if the
predicted class exactly corresponds to the ground truth. Fre-
quently, the metric intersection over union (IoU), also known
as the Jaccard index, is used for the evaluation, indicating
the portion of True Positive (TP) predictions compared to
the sum of False Positives (FP) and False Negatives (FN) of
one certain class c from a fixed set of predefined classes C:

IoUc =
TPc

TPc + FPc + FNc
(1)

After the IoU score is calculated for each individual class, an
average value of the IoU scores across all possible classes is
calculated to indicate the global segmentation quality, known
as the mean IoU (mIoU). Similarly, IoU can be calculated
in a category-wise way, however, in this setup, it is not
possible to have insights to evaluate if one certain class
within the category has a higher error rate in comparison
to other classes in the same category when that class is
insufficient represented in the dataset.

Inspired by this, we propose a novel evaluation metric
that concentrates on the error rates of the predictions that are
outside of the ground truth category, called Critical Error
Rate (CER) with respect to class c:

CERc =
FPout,c + FNout,c

TPc + FPc + FNc
(2)

where FPout,c =
∑

c′∈C\Kc

Mc,c′ and FNout,c =
∑

c′∈C\Kc

Mc′,c ,

given the confusion matrix M , which has a dimension of
|C| × |C| (predictions × ground truth) and Kc, the set of
classes in the same category as c. With CER, we swap the
numerator from TPc to two terms that represent the sum
of false positive and false negative predictions that are not
located in the ground truth category of the class c (FPout,c +
FNout,c). Meanwhile, the denominators are kept identical
to IoU metric to assure comparability with CERc ∈ [0, 1]
and IoUc + CERc ≤ 1,∀c ∈ C. CER facilitates class-wise
out-of-category error analysis.

In the case of a novel class setup, where a class has never
appeared before in the training set, the network does not give
predictions for that novel class. CER can be simplified to
another representation indicating the portion of the predic-
tions from the network which are not from the correct object
category with:

CERnovel class
c =

FNout,c

FNc
=

∑
c′∈C\Kc

Mc′,c

FNc
(3)

Qualitative comparisons utilizing CER can be found in Fig. 2
and Appendix C.

In comparison to the IoU metric, the error rate outside
of the category indicates the portion of the error that is, by
definition, considered to be more critical since the object cat-
egory shifts. In addition to that, in the case of multi-dataset
evaluation, the CER metric can be used as an indication
demonstrating the ability to classify novel classes within the
known class hierarchy, avoiding expensive dataset relabeling
efforts. We discuss the inter-category confusion based on
class taxonomies that are heavily appearance based given
by the datasets in Sec. 4 and Sec. 5. For example, a pedes-
trian ↔ rider confusion is less critical than a confusion with
a background classes such as building. But in certain sce-
narios, e.g., for motion behavior prediction, the confusion
motorcycle and bicycle is more critical as they represent
varying motion pattern although they have similar semantic
properties. Therefore, the class taxonomy that used for eval-
uation is not a natural constant, but rather a designed feature
that should be adapted to a certain use-case. We ablate vari-
ous class hierarchies in Sec. 6 as appearance hierarchy does
not always represent safety aspects.

4. Experimental Setups
4.1. Datasets

Cityscapes [7] includes 5 000 fine-annotated images for
semantic segmentation. The images are recorded in Europe
with fair weather conditions. 19 annotated classes from 7
categories defined in the dataset are frequently used.

We use ACDC [49], BDD100k [63] and A2D2 [12] to
address the problem of cross-domain adaptation and gener-
alization since they share similar annotation strategies with
Cityscapes. Those datasets include diverse driving condi-
tions that are not included in Cityscapes including night, fog,
rain, and snow around the world. We utilize the split for
validation where applicable. We use the whole A2D2 dataset
for evaluation in our work due to the absence of official split.
For comparison, we also employ Mapillary Vistas [38] for
training including 25 000 images from diverse training sit-
uations around the world. 66 classes are annotated in the
dataset (v1.2) from 9 categories. To simplify the evaluation,
we only utilize the top-level category and the leaf classes.
The class hierarchies can be found in Appendix B.

4.2. Network Architectures and Training Setup

The objective of our experiment is to evaluate the im-
pact of utilizing different image encoders and decoders. For
backbones, we investigate three different sizes of the back-
bones from the classical ResNet family [16], which are well-
established in previous work. From their counterparts of
transformer models or heavily transformer-inspired models,
we study ConvNeXt [33], Swin Transformer [32] and lately

3872



IoU% ↑ CER% ↓

Backbone Decoder pe
rs

on

ri
de

r

ca
r

tr
uc

k

bu
s

tr
ai

n

m
-b

ik
e

bi
cy

cl
e

m
ea

n

pe
rs

on

ri
de

r

ca
r

tr
uc

k

bu
s

tr
ai

n

m
-b

ik
e

bi
cy

cl
e

m
ea

n

ResNet 18
FCN 80.1 57.3 93.5 46.4 72.7 46.3 53.9 76.2 70.7 16.4 22.7 4.3 22.5 8.9 25.4 23.2 20.4 16.3
PSPNet 79.2 54.5 94.2 66.9 82.2 70.8 56.5 76.3 74.0 16.8 22.3 4.5 19.1 10.8 19.7 22.5 20.3 15.8
ASPP 81.4 60.6 94.7 73.7 84.8 74.2 61.6 76.9 76.0 15.6 22.7 4.2 11.8 7.4 15.6 21.7 19.8 14.3

SegNeXt-T HamHead 81.5 60.7 95 81.4 88.6 77.8 64.1 77.0 78.2 15.6 23.6 4.1 9.1 6.8 15.0 20.4 19.9 13.8
SegNeXt-S 83.1 64.1 95.4 82.5 91.4 82.4 69.0 78.7 80.0 14.4 22.0 3.8 7.8 5.8 14.0 18.7 18.6 12.9

ResNet 50
FCN 82.8 62.4 94.3 54.2 73.3 47.5 61.6 79.2 73.0 14.1 20.2 3.7 18.5 8.0 22.9 19.5 18.1 14.7
PSPNet 82.5 61.8 95.3 75.7 87.6 80.9 66.7 79.0 77.5 14.4 20.3 3.9 14.8 8.2 14.7 19.2 18.3 13.9
ASPP 84.0 66.0 95.7 79.9 88.9 80.6 69.3 79.5 79.3 13.6 20.0 3.5 10.8 5.7 12.6 18.3 17.8 12.7

ResNet 50
UperNet

82.6 61.2 95.3 78.7 87.7 76.8 67.8 78.9 77.9 14.1 20.8 3.8 12.5 7.6 16.1 18.2 18.3 13.5
Swin-T 82.9 62.5 95.4 80.7 88.8 79.3 68.2 78.7 79.0 14.2 21.6 3.7 9.4 6.1 13.8 18.4 18.3 12.9
ConvNeXt-T 84.0 64.7 95.8 86.0 91.8 83.5 70.3 80.3 80.8 13.2 19.9 3.5 7.0 5.3 12.2 17.0 17.0 11.9
SegNeXt-B HamHead 84.6 67.2 95.9 88.1 93.0 86.8 72.7 80.3 81.9 13.2 20.3 3.4 5.6 4.9 10.5 16.2 17.2 11.6

ResNet 101
FCN 83.3 64.4 94.8 61.9 81.8 60.3 62.7 79.1 75.7 13.9 20.2 3.6 13.1 6.1 12.4 18.6 18.2 13.3
PSPNet 83.6 64.5 95.6 80.9 89.6 79.5 69.3 79.6 78.8 13.7 20.2 3.7 11.3 5.9 12.9 17.8 17.8 13.0
ASPP 84.4 67.0 95.8 79.4 89.8 82.8 70.3 80.2 79.9 13.2 19.6 3.5 9.1 5.4 12.4 17.4 17.4 12.3

ResNet 101
UperNet

83.3 63.5 95.4 77.7 88.2 79.4 67.8 79.2 78.6 13.9 21.1 3.7 11.4 7.3 15.7 18.9 18.1 13.3
Swin-S 84.2 65.0 95.9 83.4 91.6 85.8 71.1 80.1 81.0 13.2 20.1 3.4 9.6 5.2 10.9 17.2 17.3 12.0
ConvNeXt-S 84.8 66.6 95.9 84.3 92.2 86.3 72.5 81.1 81.8 12.6 18.9 3.3 5.8 5.1 11.6 16.0 16.4 11.2
SegNeXt-L HamHead 85.2 68.1 96.1 88.5 93.4 88.4 73.6 80.8 82.5 12.6 19.5 3.3 5.5 4.7 10.0 15.6 16.8 11.2

Table 1. Source (C)→Target (C): Evaluation of semantic segmentation models trained on Cityscapes. We report the average class IoU and
class CER over three runs.

introduced SegNeXt network [15] with corresponding net-
work size. For image decoders, we compare the well-adapted
ASPP head from DeepLabv3Plus(DLv3+) [3] and the Uper-
Net decoder head [59], which is commonly combined with
latest encoder architectures. Beside that, we ablate simple
and also frequently used single and multiple scale decoder
head FCN [35] and pyramid pooling module [67]. We use
identical number of iterations and batch size across our ex-
periments and datasets to assure comparability. The detailed
training setup can be found in Appendix A.

5. Evaluation

In order to evaluate the ability of network generalization,
we quantify the differences with 3 different setups. First,
in Sec. 5.1 we only evaluate on source domain, so that we
can show the inherent properties of intra- and inter-category
confusion. In this setup, we train and evaluate our models
separately utilizing Cityscapes or Mapillary datasets. We
focus on IoU and CER for classes in the category human and
vehicle. Beside that, we also calculate the mean IoU, mean
CER across all the classes. Secondly, in Sec. 5.2 we evaluate
the domain shift changes, where the visual appearance of
the objects changes while the type of the objects remains
unchanged. With that, we consider Cityscapes and Mapillary
as our source datasets and evaluate on the classes where they
share similar class definition as A2D2, ACDC and BDD100k
dataset. Finally, in Sec. 5.3 we consider the realistic open-
world heterogeneous setup where the domain is changing
and new classes are appearing at the same time. Similar

to the domain shift setup, the networks are trained on both
source datasets and evaluated on the A2D2 dataset with
emphasis on those novel classes.

5.1. Source Domain

We first analyze the results from the source-to-source
setup in the Cityscapes dataset. As shown in Tab. 1, there
is a negative correlation between the IoU and CER, since it
is trivial to derive that the absolute error that a certain net-
work makes decreases when the segmentation performance
increases. For the architectures with FCN decoder, which
yield also worse segmentation performance measured by
IoU due to the lack of multi-scale features, they have similar
performance measured by CER comparing with other heads.
This can be seen as an indication that out-of-category errors
are more affected by the quality of feature representations
that generated by the image encoder. On the other hand, al-
though SegNeXt-S achieves similar performance measured
by IoU to ResNet 101 backbone in combination with the
ASPP decoder, SegNeXt-S model has more out of category
errors: When there is a classification error, the model tends
to classify the pixel as belonging to a different category,
which usually poses a higher safety risk.

Tab. 2 shows the evaluation of three sets of models trained
on the Mapillary dataset. We choose two mainstream archi-
tectures, DLv3+ and ConvNeXt, with the best performing
model on Cityscapes for evaluation. The negative correlation
between IoU and CER can still be observed. In Mapillary
dataset, due to the multitude of classes that are available and
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ResNet-18
ASPP

70.2 35.6 0.0 90.3 0.9 0.0 64.3 0.0 36.9 26.0 27.3 46.8 6.8 29.2 7.5 14.9 30.7 33.4
ResNet-50 75.4 57.6 0.0 92.1 15.8 0.0 73.6 17.4 44.2 21.8 21.6 45.6 5.9 24.7 6.8 10.9 31.1 29.6
ResNet-101 76.3 57.2 0.0 92.5 21.5 0.0 73.7 39.1 45.5 21.1 21.1 44.1 5.6 24.6 7.6 11.1 24.2 29.0
ConvNeXt-T

UperNet
75.3 61.0 0.0 91.8 23.5 0.0 73.8 48.8 48.0 21.9 20.4 44.2 6.1 24.8 9.0 11.8 23.4 28.4

ConvNeXt-S 76.8 63.9 0.0 92.4 27.1 9.4 75.9 59.8 50.8 20.7 19.0 47.5 5.7 22.7 10.1 9.6 21.6 26.9
ConvNeXt-B 78.0 67.4 0.0 92.6 34.4 10.1 76.4 64.4 51.5 20.0 18.9 37.4 5.6 21.9 11.0 10.0 23.2 26.6
SegNeXt-S

HamHead
71.2 58.7 0.0 90.8 26.0 0.1 73.7 49.1 46.1 26.4 23.1 46.3 7.2 27.3 8.3 12.0 21.8 30.8

SegNeXt-B 73.6 63.0 0.0 91.6 31.6 9.6 77.2 61.8 49.5 24.2 21.5 43.6 6.8 23.6 14.3 11.0 22.5 28.2
SegNeXt-L 75.1 65.4 0.0 92.1 31.0 8.2 77.9 67.9 51.5 22.9 20.1 39.2 6.4 23.4 15.7 10.1 20.3 27.5

Table 2. Source (M)→Target (M): Evaluation of semantic segmentation models trained on Mapillary Vista dataset. We report the average
class IoU and class CER over three runs.

the unevenly distributed class instances, e.g., classes like
other rider, trailer and rails have fewer training samples
compared to others. Although the IoUs of the corresponding
classes are low, they are still frequently classified into a class
that is in the same class category. For instance, with the
ASPP decoder, the class trailer has an IoU of 0 with all
backbone configurations in our experiments, however, there
is only a small portion of the predictions that are outside of
the vehicle category. Similar effects can be observed with
the class trailer and rails, although there is a significant im-
provement measured by IoU across the configurations, the
CER is not negatively correlated to IoU. Despite the fact
that underrepresented classes, such as other rider, cannot
be classified correctly, the critical error rate decreases as
the network’s learning capacity grows. Our assumption is
that the decision boundary of the class is not only shaped by
the class itself but also by other classes that share common
semantic or visual properties from the same object category.

Comparing the results from both datasets, it is confirmed
that the IoU metric accurately reflects the performance of
the networks when the instances of the classes in the dataset
are well distributed and the number of available classes is
limited. However, when the dataset addresses the long-tail
distribution problem, CER can be utilized as a valuable sup-
plement to evaluate the performance of the neural network.

5.2. Domain Shift

In the domain shift setup, we evaluate the generalization
ability of the networks on three different target datasets:
ACDC, BDD100k and A2D2. Since ACDC and BDD100k
share the same label space with Cityscapes, we evaluate the
networks that we trained on Cityscapes and calculate the
corresponding metrics for each class. Due to the uncertainty
of the network, we repeat the training three times with certain
seed from ImageNet-pretrained backbones and report the
standard deviation of the model performance.

Tab. 3 depicts zero-shot semantic domain generalization
performance from eight architectures, including the well-

adapted ResNet-based CNN, image transformer, and modern
CNN models. Compared with their performance on the
source domain, which can be found in Tab. 1, a significant
performance drop can be observed. Beside the frequently-
seen class person, we mainly focus on underrepresented
classes in our analysis. On ACDC dataset, the state-of-the-art
transformer model and modern CNN model, e.g., ConvNeXt
and Swin transformer, illustrate their strength at learning
more generalized features by achieving better performance,
as significant domain generalization differences can be ob-
served between those models. Although ConvNext-Tiny and
DLv3+ with ResNet 50 backbone achieve similar perfor-
mance on source domain, the modern CNN model yields
12.2% absolute mIoU improvement on the target domain
with lower standard deviation.

We observe similar results on BDD100k validation set.
However, due to the extreme data distribution for the class
train in the dataset, most of the models have poor perfor-
mance on this class as judged by IoU. However, as the CER
metrics indicate, a lot of predictions are still assigned to
the category of vehicle instead of other categories. Similar
effects can be seen in the class of truck: Although the IoU
remains low, there are significantly more predictions in the
category of vehicle compared to ACDC dataset, where the
false predictions are to a large extent in other object cate-
gories. This may also due to the different appearance of
certain classes and deviated labeling strategy. In addition to
that, we notice the modern architectures with naive training
organization have also achieved results that are similar to
dedicated domain generalization methods reported by [6].

Since the A2D2 dataset does not share the same label
space with other datasets, we choose a subset of classes
that can be remapped to the Cityscapes evaluation scheme,
as we evaluate the novel classes in the following subsec-
tion, Sec. 5.3. We consider the class car and truck from
the A2D2 dataset in this subsection. The models that are
used for evaluation are trained on Cityscapes or Mapillary.
For a fair comparison they are trained with identical train-
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ACDC BDD100k
Architecture person truck bus train mean person truck bus train mean

Io
U

%

DLv3+ R50 38.1 ± 4.4 4.9 ± 1.5 31.4 ± 11.9 30.0 ± 8.4 37.6 ± 1.7 45.2 ± 21.3 21.8 ± 2.9 15.8 ± 4.7 0.2 ± 0.2 42.9 ± 0.9
UperNet R50 43.2 ± 1.8 2.5 ± 2.1 40.3 ± 7.7 32.2 ± 1.8 35.1 ± 0.2 56.3 ± 1.6 16.4 ± 2.0 15.7 ± 6.6 0.0 ± 0.0 42.1 ± 1.2
DLv3+ R101 47.7 ± 5.7 11.6 ± 9.6 38.5 ± 25.6 28.9 ± 6.5 40.3 ± 2.9 59.1 ± 0.5 28.2 ± 1.3 24.5 ± 6.4 0.2 ± 0.2 45.9 ± 0.9
UperNet R101 46.4 ± 0.2 2.3 ± 2.1 33.6 ± 4.0 24.8 ± 15.3 35.8 ± 2.8 57.4 ± 1.0 22.6 ± 1.0 22.1 ± 2.7 0.1 ± 0.1 45.2 ± 0.7
UperNet Swin-T 39.6 ± 3.9 18.5 ± 5.2 44.4 ± 1.7 36.7 ± 3.7 39.4 ± 0.9 54.8 ± 2.2 26.7 ± 1.6 31.8 ± 5.1 0.0 ± 0.0 43.7 ± 0.8
UperNet Conv-T 52.1 ± 0.9 41.4 ± 4.0 44.0 ± 2.1 57.7 ± 1.7 49.8 ± 0.4 63.1 ± 0.4 38.6 ± 0.6 31.0 ± 3.4 0.1 ± 0.1 51.2 ± 0.3
UperNet Swin-S 45.6 ± 2.8 41.5 ± 7.2 60.9 ± 8.2 40.5 ± 1.9 47.1 ± 1.3 59.9 ± 0.8 30.5 ± 2.4 34.5 ± 9.7 0.2 ± 0.2 48.0 ± 0.9
UperNet Conv-S 60.3 ± 0.5 52.1 ± 11.0 52.3 ± 3.2 57.3 ± 5.5 54.5 ± 1.1 66.7 ± 0.4 39.6 ± 1.0 38.6 ± 3.6 0.4 ± 0.1 55.4 ± 0.3

C
E

R
%

DLv3+ R50 60.4 ± 5.3 90.8 ± 2.0 49.3 ± 12.4 48.8 ± 11.8 47.4 ± 1.2 53.6 ± 22.1 46.7 ± 8.7 22.2 ± 5.9 30.7 ± 13.7 36.2 ± 1.0
UperNet R50 56.1 ± 1.7 93.6 ± 4.7 42.1 ± 12.3 33.6 ± 14.6 49.3 ± 0.6 43.2 ± 1.6 50.9 ± 3.2 23.0 ± 6.4 14.8 ± 2.4 34.9 ± 1.3
DLv3+ R101 51.1 ± 6.0 79.1 ± 14.7 46.3 ± 31.1 43.9 ± 3.4 44.9 ± 2.4 40.3 ± 0.5 32.9 ± 3.4 25.1 ± 12.4 18.9 ± 8.1 33.0 ± 0.6
UperNet R101 52.9 ± 0.2 94.0 ± 4.8 58.1 ± 3.9 51.9 ± 32.1 50.4 ± 3.7 41.9 ± 1.2 42.5 ± 2.4 28.2 ± 5.6 27.4 ± 13.4 34.2 ± 1.5
UperNet Swin-T 58.7 ± 4.3 73.4 ± 6.6 41.4 ± 5.1 47.1 ± 4.6 45.6 ± 0.5 41.0 ± 0.5 40.4 ± 3.2 16.4 ± 3.0 27.3 ± 6.4 32.4 ± 1.3
UperNet Conv-T 45.8 ± 1.4 43.6 ± 11.2 47.3 ± 5.2 34.1 ± 2.8 36.8 ± 1.0 35.4 ± 0.3 22.0 ± 0.3 10.3 ± 0.5 19.2 ± 4.8 27.1 ± 0.4
UperNet Swin-S 53.1 ± 2.1 45.2 ± 4.7 30.8 ± 10.3 49.7 ± 4.5 38.6 ± 1.1 38.9 ± 0.3 30.1 ± 5.9 14.2 ± 6.5 25.5 ± 13.3 30.0 ± 1.3
UperNet Conv-S 38.5 ± 0.4 32.0 ± 11.0 30.7 ± 3.9 33.8 ± 6.9 31.5 ± 0.9 32.1 ± 0.3 22.1 ± 2.3 7.9 ± 1.6 11.9 ± 1.7 23.5 ± 0.2

Table 3. Source (C)→Target (AC, B): Zero-shot evaluation of models trained on Cityscapes, evaluated on ACDC and BDD100k. We apply
color gradient visualizing IoU shifts within each class across the two datasets. We report the values over three runs.

ing setup, i.e., the same number of iterations with the same
batch size. Tab. 4 shows the evaluation of the generalization
ability of networks trained on both datasets. It can be ob-
served that the networks with the ResNet-18 image encoder
trained on Mapillary dataset outperform models that have
three times more parameters (ResNet-101) that were trained
on Cityscapes before. We notice similar effects with the
ConvNeXt-Tiny backbone, where models trained on Mapil-
lary achieve a lower error rate, lower deviations, and higher
IoUs than the more sophisticated ConvNeXt-Base model
trained on Cityscapes, which corresponds to the recent work
by Piva et al. [44]. Beside that, the better generalization abil-
ity of the modern CNN models is affirmed again [1, 57], as
ConvNeXt-based models surpass the classical ResNet-based
models regardless of the dataset that used for training.

Car Truck
Setup IoU% CER% IoU% CER%

C
ity

sc
ap

es

R18 88.8 ± 1.3 5.0 ± 0.1 49.8 ± 8.1 24.1 ± 7.0
R50 89.0 ± 1.1 5.7 ± 0.7 54.2 ± 9.9 24.5 ± 6.0
R101 88.8 ± 2.0 5.0 ± 1.3 53.1 ± 9.6 17.4 ± 4.1
Conv-T 91.8 ± 0.4 4.0 ± 0.2 62.5 ± 1.0 14.9 ± 1.1
Conv-S 92.5 ± 0.4 3.9 ± 0.3 69.3 ± 0.3 9.9 ± 0.7
Conv-B 93.6 ± 0.1 3.6 ± 0.2 69.4 ± 1.8 10.6 ± 1.8

M
ap

ill
ar

y

R18 92.5 ± 0.3 4.1 ± 0.2 62.8 ± 2.0 14.0 ± 2.8
R50 93.9 ± 0.2 3.5 ± 0.1 72.0 ± 1.7 7.3 ± 0.8
R101 94.3 ± 0.2 3.4 ± 0.2 73.7 ± 0.3 6.2 ± 0.6
Conv-T 94.2 ± 0.0 3.4 ± 0.1 74.0 ± 0.3 5.3 ± 0.3
Conv-S 94.7 ± 0.1 3.3 ± 0.1 76.0 ± 0.3 5.0 ± 0.6
Conv-B 94.6 ± 0.1 3.2 ± 0.1 75.1 ± 0.2 4.6 ± 0.3

Table 4. Source (C/M)→Target (A2): Evaluation of models
trained on Cityscapes and Mapillary, evaluated on two classes
from A2D2 dataset that share the same label space. We report the
average IoU and CER over three runs.

5.3. Novel Class

We further extend our experiments to evaluate on previ-
ously unknown classes. The motivation is to assess whether
the model tends to infer the correct class category, when an

unknown object appears which is previously not included in
the dataset but shares the same object category. We perform
zero-shot evaluation on the A2D2 dataset and Mapillary
dataset for the novel class setup with the neural networks
previously trained on Cityscapes or Mapillary dataset. We
report the CER of the classes utility vehicles, tractor from
A2D2 dataset as well as the classes other rider, caravan,
other vehicle and wheeled slow from Mapillary. All of the
previously introduced classes are part of the category vehi-
cle in A2D2 and Mapillary except other rider which is in
the category of human. For reference, we note their mean
IoUs as performance indications on the source domain. We
report the average CER of the corresponding classes and
the standard deviation to demonstrate the fluctuation of var-
ious seeds for network training. Utilizing the CER metric
avoids potential ambiguity, which may cause unfair scores
in the evaluation caused by varying labeling policies across
different datasets. In order to evaluate the differences of
the models trained with varying datasets, we also evaluate
networks that trained with Mapillary dataset on A2D2.

The comparison can be seen in Tab. 5. Similar to the do-
main shift setup, although some of the models have similar
performance on the source domain, they showed different
levels of generalization. From a dataset point of view, a
large, diverse dataset like Mapillary still shows impressive
generalization ability, as a DLv3+ model with ResNet-50
backbone achieves similar performance in the class utility
vehicle as its ConvNeXt counterparts, although there is still
disparity in the tractor class. Beside that, the modern CNN
models and transformer models outperform ResNet-based
architectures with a lower CER and simultaneously lower
performance deviation. With increasing learning capacity,
similar to the observations in the last subsections, the net-
works can implicitly differentiate objects from various class
categories, even if they are not explicitly given as learning
objectives during training, as the sophisticated backbones
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Source A2D2 CER% ↓ Mapillary CER% ↓
Backbone Decoder Dataset mIoU% Util. Vehicles Tractor Other Rider Caravan Other Vehicle Wheeled Slow

ResNet 18
FCN CS 70.7 62.3 ± 3.6 63.7 ± 12.0 30.6 ± 2.9 38.8 ± 8.9 35.2 ± 2.2 63.1 ± 2.6

ASPP CS 76.0 56.7 ± 5.6 56.7 ± 8.7 33.2 ± 2.3 20.4 ± 7.4 31.5 ± 2.8 66.5 ± 5.6
MV 36.9 48.4 ± 3.5 18.7 ± 6.6 - - - -

ResNet 50
FCN CS 73.0 71.7 ± 3.1 83.8 ± 5.1 32.3 ± 0.9 40.0 ± 5.3 36.4 ± 2.7 66.2 ± 0.7

ASPP CS 79.3 53.1 ± 3.2 76.7 ± 2.3 34.5 ± 3.2 34.5 ± 30.2 31.6 ± 2.3 61.2 ± 1.7
MV 44.2 35.8 ± 2.1 9.5 ± 0.0 - - - -

ResNet 50

UperNet

CS 77.9 57.3 ± 4.1 59.0 ± 19.2 44.8 ± 3.5 52.0 ± 10.1 32.1 ± 1.5 67.1 ± 4.7
Swin-T CS 79.0 51.6 ± 9.8 73.5 ± 6.9 29.9 ± 0.5 70.6 ± 16.5 28.3 ± 3.6 63.7 ± 2.0

ConvNeXt-T CS 80.8 35.6 ± 6.1 45.3 ± 4.2 23.0 ± 3.5 59.1 ± 13.3 28.7 ± 1.5 65.2 ± 1.6
MV 48.0 24.8 ± 2.1 7.4 ± 0.3 - - - -

SegNeXt-B HamHead CS 81.9 31.1 ± 1.7 28.4 ± 3.5 30.5 ± 3.5 27.0 ± 14.0 34.3 ± 1.3 64.8 ± 2.5

ResNet 101 FCN CS 75.7 55.3 ± 4.1 65.5 ± 11.5 27.9 ± 2.0 30.9 ± 23.2 32.3 ± 1.8 67.1 ± 4.9
ASPP CS 79.9 46.3 ± 2.7 58.4 ± 18.2 31.4 ± 7.6 32.7 ± 34.1 33.6 ± 1.2 68.2 ± 5.4

ResNet 101

UperNet

CS 78.6 52.5 ± 17.1 57.5 ± 28.2 32.7 ± 5.2 54.7 ± 30.0 35.4 ± 6.1 73.4 ± 3.0
Swin-S CS 81.0 47.4 ± 4.5 59.4 ± 3.3 21.7 ± 2.6 78.5 ± 0.5 29.7 ± 3.5 67.1 ± 2.7

ConvNeXt-S CS 81.8 27.8 ± 3.1 25.0 ± 4.0 25.7 ± 1.3 45.0 ± 17.3 27.9 ± 0.8 70.8 ± 1.7
MV 50.8 20.7 ± 3.3 6.8 ± 0.1 - - - -

SegNeXt-L HamHead CS 82.5 33.5 ± 4.1 35.3 ± 7.0 29.8 ± 6.5 31.5 ± 34.4 30.5 ± 0.9 65.4 ± 1.9

Table 5. Source (C/M)→Target (A2/M): Zero-shot evaluation on six novel classes in an open-world semantic segmentation setup, we
report class CER values and their standard deviations over three runs. As reference, we additionally provide their mIoU in source domain.

tend to classify those previously unknown objects into their
superclasses. Multi-scale features prove to be beneficial
for the generalization, while the feature pyramid network
from UperNet in combination with ResNet may cause higher
variation in the performance when the size of the model
grows as the first layers of the encoder are trained to adapt
the source domain. We observe that this property has less
impact on the modern backbone. We assume that the intro-
duction of new types of normalization layers may alleviate
the negative effects. ConvNeXt and Swin Transformer show
deviating behavior when encountering new objects. Swin
models have a significantly higher error rate in the near car
and truck classes compared with their ConvNeXt counter-
parts, although the two neural networks are trained with the
same training configuration, e.g., loss function and train-
ing scheduler. The new SegNext family indeed achieves
similar generalization ability to ConvNeXt models, but the
state-of-the-art segmentation performance cannot be directly
transferred to a random, previously unknown domain. Com-
bined with the results from Sec. 5.2, we suggest that CER
can also be used as a quality indication for the datasets re-
flecting data variety or similarity. In Fig. 2, we show some
qualitative results from A2D2 and Mapillary datasets, where
there are previously unknown objects according to the train-
ing classes in the images. We also note the CER scores of
the novel class in the images.

6. Ablation Study

Current class hierarchies are most commonly based on
semantic differences between the classes. However, to ad-
dress safety potentials, we propose two different concepts
of class hierarchies as an ablation study to investigate the
impact of utilizing different taxonomies: According to their

possible motion behavior in the near future (as the velocity
of rider may differ from that of a car) or, on the other hand,
such that dynamic objects are distinguished into whether
the class is considered a vulnerable road user (VRU), or if
they have notable impact protection when a crash happens.
To simplify our experiment, we only consider the classes
that are under category human and vehicle. We ablate in
this section if a flexible class taxonomy can provide more
insight for the evaluation of the networks. We consider the
following two alternative class taxonomies in the range of
classes previously annotated as vehicle and human:

Behavior-based class taxonomy: We first consider a
behavior-based class hierarchy, which depends on the possi-
ble moving speed of the class, to evaluate the use of segmen-
tation results as input for behavior predictions. We divide
the classes into two categories: one with low velocity in the
scenes, like person and wheeled slow, while motorized ob-
jects and their riders are treated as objects that are considered
to have more displacement in a certain time period.

VRU-based class taxonomy: We further divide the
classes into two categories: VRU classes for objects that have
little protection against crash forces, and non-VRU classes.
We study the class Motorcyclist, other Rider and Wheeled
slow under various class taxonomies in Tab. 6. From the class
motorcyclist, we observe a significant difference in reported
CER when the class taxonomy changes. The evaluation un-
der the VRU scheme indicates that the model generally has
a lower amount of confusion due to the fact that we consider
motorcycle and motorcyclist both as part of the VRU cate-
gory, which can also be discovered in the other two evaluated
classes. This is an indication that there is frequent confusion
between various VRU classes due to their appearance. The
motion behavior scheme presented by CER poses a chal-
lenge for the trained neural network. The reason for that is
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Input DLv3+ ResNet50 Swin-Tiny ConvNeXt-Tiny SegNeXt-L

a) CERCaravan% ↓ 19.37 100.0 73.23 12.24

b) CERWheeled Slow% ↓ 27.82 61.57 50.14 90.25

c) CERUtility Vehicle% ↓ 14.34 35.27 64.52 17.33

d) CEROther Vehicle% ↓ 91.05 35.65 68.44 41.11

Figure 2. Qualitative results on A2D2 dataset and Mapillary dataset. The neural networks are trained on Cityscapes dataset and evaluate in a
zero-shot fashion facing previously unknown objects like a) caravan, b) stroller, c) and d) construction machines. Best viewed in color.

that visual differences between the classes are dominantly
utilized in optimization during training. During evaluation,
the metric treats visually similar classes into separate diverse
semantic categories, e.g., when bicyclist and motorcyclist
are not considered in the same object category due to their
motion difference, which is not included in the learning ob-
jectives and thus needs to be sufficiently addressed during
training in order to achieve promising performance. Detailed
class taxonomies can be found in Appendix B.

CER% ↓ CERB% ↓ CERV% ↓
Setup M R W M R W M R W
R18 20.9 33.2 66.5 86.2 32.9 48.1 11.4 24.6 34.4
R50 12.4 34.5 61.2 92.8 34.2 56.2 7.7 27.4 39.2
R101 13.4 31.4 68.2 92.3 30.3 49.8 8.9 26.3 39.2
C-T 11.7 23.0 65.2 93.3 21.3 44.6 7.9 19.3 36.2
C-S 11.5 25.7 70.8 92.6 25.3 45.0 7.5 24.3 37.7
C-B 11.6 21.0 72.3 92.9 20.0 42.2 8.5 18.9 33.8

Table 6. Ablation study on different class taxonomies, we show
the CER with class hierarchy from Mapillary dataset, its variant
CERB based on behaviour of the classes and CERV according to
VRU property. We report CER values over three runs.

7. Conclusion and Outlook

In our work, we propose a novel evaluation metric for
semantic segmentation that specifically addresses the dis-

tinction between intra- and inter-category errors. We first
evaluate the out-of-category error behavior of current state-
of-the-art models and classical CNN models without domain
shifts, revealing the fact that the optimization process of un-
derrepresented classes is also driven by appearance-similar
classes. In a domain-shift setup, we confirmed the good gen-
eralization ability of modern architectures like ConvNeXt.
Beside that, we showed the importance of data variety, which
affects the performance of the neural networks more than
learning capacity. We also evaluate the models’ behavior
when a novel object appears and show the differences be-
tween the models. Last but not least, we discuss the im-
pact of utilizing class taxonomies that are independent from
appearance for the category-related semantic segmentation
evaluation. Future work could additionally conduct more ex-
haustive evaluations, considering other application domains
and a wider variety of class hierarchy principles.
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