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Abstract— Autonomous vehicles rely on a variety of sensors
to gather information about their surrounding. The vehicle’s
behavior is planned based on the environment perception, mak-
ing its reliability crucial for safety reasons. The active LiDAR
sensor is able to create an accurate 3D representation of a scene,
making it a valuable addition for environment perception for
autonomous vehicles. Due to light scattering and occlusion, the
LiDAR’s performance change under adverse weather conditions
like fog, snow or rain. This limitation recently fostered a large
body of research on approaches to alleviate the decrease in
perception performance. In this survey, we gathered, analyzed,
and discussed different aspects on dealing with adverse weather
conditions in LiDAR-based environment perception. We address
topics such as the availability of appropriate data, raw point
cloud processing and denoising, robust perception algorithms
and sensor fusion to mitigate adverse weather induced short-
comings. We furthermore identify the most pressing gaps in the
current literature and pinpoint promising research directions.

I. INTRODUCTION

The Light Detection and Ranging (LiDAR) sensor recently
gained increased attention in the field of autonomous driving
[1]. It provides sparse but accurate depth information, mak-
ing it a valuable complement to more well-studied sensors
like camera and radar. The LiDAR sensor is an active sensor,
meaning it emits light pulses which are reflected by the
environment. Afterwards, the sensor captures the reflected
light and measures the distance of the environment based on
the elapsed time. Additionally to the time, other features can
be evaluated, like the amount of light and the elongation of
the signal. In most cases, there are mechanical components
in combination with multiple laser diodes to create a sparse
point cloud of the complete scene [1]. There are various
different sensors available on the market.

There are different shortcomings for LiDAR sensors under
adverse weather conditions. Firstly, sensor freezing or other
mechanical complications might occur in freezing temper-
atures [5], [6]. Internal and structural factors like sensor
technology, model and mounting position play a role in the
degree of deterioration [6]. Additionally, adverse weather
affects the intensity values, number of points, and other
point cloud characteristics (see Figure I) [7], [8]. In general,
when encountering particles in the air due to dust or adverse
weather, the emitted light is back scattered or diverted. This
results in noisy distance and reflectance measurements in
the point cloud, as some laser pulses return too early to the
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Fig. 1. LIDAR SCANS OF A STREET ENVIRONMENT UNDER CLEAR
WEATHER CONDITIONS (TOP) AND WITH FOG (BOTTOM). THE RAW
DATA IS TAKEN FROM THE KITTI DATASET [2] AND IS AUGMENTED WITH
SIMULATED FOG AND WET ROAD [3], [4]. THE COLOR REFLECTS THE
MEASURED INTENSITY (RED = LOW, BLUE = HIGH). NOISY MEASURE-
MENTS CAN BE OBSERVED IN THE PROXIMITY OF THE SENSORS, WHICH
AFFECT THE INTENSITY AND DISTRIBUTION OF THE POINTS WITHIN THE
POINT CLOUD.

sensor or gets lost in the atmosphere1. The noise is especially
harmful when applying scene understanding algorithms [9],
[10]. In this safety-critical usecase it is particularly crucial
to maintain a reliably high predictive performance. Thus,
there is a need for coping strategies to minimize the LiDAR
perception performance degradation under adverse weather
conditions, or at least to detect the sensor’s limitations in
real-world scenarios.

Most state-of-the-art algorithms rely on deep learning
(DL) algorithms, which digest large amounts of data to derive
well-generalizing features of the surrounding. While there is
a stream of research focusing on unsupervised perception, the
majority of recent works require the according labels for the
raw data. This includes bounding boxes for object detection
and point-wise class labels for semantic segmentation. Man-
ually labeling sparse and additionally noisy point cloud is not
only difficult but also expensive and error-prone [11]. Thus,
the question of how to simulate or augment existing point
cloud with weather-specific noise is especially interesting.

While there is a large body of research on analyzing the
performance degradation of LiDAR sensors under adverse

1It should be noted that e.g. higher rain rates do not necessarily result in
lower quality point clouds. The sensor degradation is rather non-linear with
respect to different weather characteristics [7].
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weather condition [7], [5], [6], [9], [10], [12], [13], [14], a
comprehensive summary on algorithmic coping strategies for
an improved perception is missing. Furthermore, surveys on
autonomous driving under adverse weather conditions which
address weather-induced sensor deterioration [15], [16], [17]
do not pinpoint weather-related problems which are unique
to the LiDAR sensor. This survey paper summarizes and
analyses various approaches on dealing with adverse weather
conditions for LiDAR perception. Thereby, we illuminate the
topic from three different angles:

• Availability of Data (Section II): real-world and syn-
thetic datasets for development of robust LiDAR per-
ception algorithms

• Point Cloud Manipulation (Section III): sensor-specific
weather robustness and perception-independent point
cloud processing (e.g. weather classification, point cloud
denoising)

• Robust Perception (Section IV): robust perception al-
gorithms which are able to deal with weather-induced
noise in the point clouds by e.g. fusing multiple sensors,
making adjustments in the training or increasing the
general robustness of the perception model

Finally, we provide some concluding remarks about the
missing gaps in the current state of the art and also the most
promising research directions.

II. ADVERSE WEATHER DATA

To train DL models on any kind of perception task, vast
amounts of data are required. For supervised approaches,
which still dominate the state-of-the-art, those data even have
to be labeled through either auto labeling methods or in
a manual fashion [1]. In either way, obtaining accurately
labeled sparse LiDAR data is expensive and cumbersome,
and even more impeded when the raw point clouds are
corrupted by weather-induced noise.

Consequently, there is a need for valuable datasets with
high quality labels. Generally, there are three options to
obtain LiDAR point clouds with weather-characteristic noise
patterns: real-world recordings, augmented point clouds and
simulated point clouds. The first ones are generated under
adverse weather conditions using test cars with appropriate
sensor setups. The latter ones require either physical model-
or DL-based methods to create parts or the whole point
cloud.

A. Real-world Datasets

Most of the existing datasets used for LiDAR perception
benchmarks are recorded under favorable weather conditions
[2], [18], [19], [20]. For using developed perception algo-
rithms under real-world situations, the underlying dataset has
to reflect all weather conditions. There are some extensive
datasets which explicitly include rain, snow and fog besides
clear weather conditions.

Table II-A shows an overview over publicly available
datasets for research on LiDAR perception under adverse
weather conditions. The datasets are recorded under dif-
ferent conditions and greatly vary in size. Most of them

are actually recorded in real-world driving scenarios, while
two of them (partially) stem from weather chambers [21],
[27]. Weather chambers have the advantage to fully control
the weather conditions and surroundings, i.e. in terms of
obstacles. Nevertheless, they do not adequately reflect real-
world conditions.

Furthermore, every dataset uses a different sensor setup.
[27] specifically aims for benchmarking LiDAR manufactur-
ers and models under adverse weather conditions. Besides the
LiDAR sensors, all datasets provide RGB camera recordings,
some even include radars [21], [28], [30], stereo- [24], [28],
event- [27], gated- [21] or IR-cameras [21], [27], [25].

The datasets are designed to tackle different perception
and driving tasks for autonomous vehicles. Almost all sensor
setups (except [21]) include localization and motion sensors,
i.e. GPS/GNSS and IMUs. Thus, they are suitable to de-
velop and test SLAM algorithms. Besides [29], which only
provides motion ground truth, all datasets provide either
labels for object detection [21], [23], [27], [30] or point-wise
segmentation [24], [26]2.

Finally, all datasets include some kind of meta data regard-
ing the weather conditions. This is crucial for the develop-
ment of almost any kind of perception model under adverse
weather conditions. At least for a thorough validation, some
knowledge about the intensity and nature of the surrounding
weather conditions is crucial. Only one dataset provides
point-wise weather label, i.e. falling and accumulated snow
along the roadside [26].

The advantage of datasets consisting of real-world record-
ings is the high degree of realism. The disadvantages are only
partially available (point-wise) labels for the recorded scenes
or, in case the data are recorded in a weather chamber, only
limited application to way more complex real-world scenar-
ios. The manual point-wise labeling of LiDAR point clouds
under adverse weather conditions is especially challenging,
since in many cases it is impractical to distinguish clutter or
noise from the actual reflection signal.

B. Weather Augmentation

Augmentation of adverse weather effects into existing
datasets provides an effective way of generating vast amounts
of data in contrast to tediously collecting and labeling new
datasets for different adverse weather effects. Oftentimes,
physics-based or empirical augmentation models are used
to augment a certain adverse weather effect into clear-
weather point clouds, whether they come from real-world
drives or from simulations like [31]. This allows to obtain
scenes corrupted by weather-specific noise while keeping
all interesting edge cases and annotations that are already
present in the dataset.

Augmentation methods define a mapping of a clear-
weather point to a respective point in adverse weather
conditions. To this end, the theoretical LiDAR model in [32]
is often referenced which models the influence of adverse
rain, fog and snow. It models the received intensity profile

2For brevity, the label information are summed up into rough categories.



Dataset Scenario Weather LiDAR Ground Truth

open-
world

weather
chamber rain fog snow Motion Object

Detection
Semantic
Segmentation

Weather
Information

STF [21], [22] VLP-32C, HDL64-S3 - 4 classes - ambient data
CADC [23] VLP-32C GPS, IMU 10 classes - weather type

ADUULM [24] 2x VLP-16,
2x VLP-32 GPS, IMU - 12 classes weather type

WADS [25], [26] 2x VLP-16 GPS, IMU - 22 classes & 2
snow classes point-wise

LIBRE [27]

VLS-128, HDL64-S2,
HDL-32E, VLP-32C,
VLP-16, Pandar64,
Pandar40P, OS1-64,
OS1-16, RS-Lidar32
C32-151A, C16-700B

- - - ambient data

Oxford RobotCar
[28], [29] 2x HDL-32E GPS, INS - - -

RADIATE [30] 2x HDL-32E GPS 2 classes
(for radar) - weather type

TABLE I
OVERVIEW OVER REAL-WORLD PERCEPTION DATASETS FOR AUTONOMOUS DRIVING UNDER ADVERSE WEATHER CONDITIONS FEATURING

LIDAR DATA: SEPERATED INTO OBJECT DETECTION-, SEMANTIC SEGMENATION- AND SIMULTANEOUS LOCALIZATION AND MAPPING

(SLAM)-FORWARD DATASETS. *WEATHER INFORMATION EXPLANATION: AMBIENT DATA = EXACT WEATHER MEASUREMENTS FROM WEATHER

STATION, WEATHER TYPE = KIND / CATEGORICAL INTENSITY OF WEATHER (E.G. FOG, (HEAVY / LIGHT) RAIN / SNOW, ...), POINT-WISE = POINT-WISE

WEATHER LABEL

as a linear system by convolving the emitted pulse with the
scene response. The scene response models the reflection on
solid objects as well as back-scatter and attenuation due to
adverse weather.

A more practical augmentation for fog that can be applied
to point clouds directly is introduced in [9]. It is based
on the maximum viewing distance which is a function of
measured intensity, LiDAR parameters and optical visibility
in fog. If the distance of a clear weather point falls below the
maximum viewing distance, a random scatter point occurs
or the point is lost with a certain probability. This model is
adapted to rain by translating visibility parameters and scatter
probabilities to rainfall rates [10]. Another rain augmentation
model is described in [33]. Rain drops are either causing
scatter or lost points depending on if the attenuated intensity
falls below a noise threshold estimated from the sensor’s
maximum range.

Yet, these models ignore the beam divergence of the emit-
ted LiDAR pulse for rain augmentation, which is considered
by [34]. Here, the number of intersections of supersampled
beams modelling the beam divergence with the spherical rain
drops is computed. If the number of intersections exceed a
certain threshold, a scatter point is added. The augmentation
method in [35] extends this approach such that lost points
can occur. Furthermore, it is adapted for snow and fog.

Another augmentation for fog, snow and rain is presented
in [36]. This model operates in the power domain and
does not rely e.g. on counting intersections as the previ-
ously discussed methods. Additionally, beam divergence is
simulated with a computationally more efficient sampling
strategy for scatter point distances. In general, the model first
compares the attenuated power reflected from solid objects

and randomly sampled scatterer with a distance dependent
noise threshold. A scatter point is added if the power from
scatter points exceeds the one from the solid object. A point
is lost if it falls below a distance dependent noise threshold.

Other power domain-driven augmentation methods can
be found in [3] and [4] for fog and snow, respectively. In
contrast to [36], they explicitly compute the intensity profile
relying on the theoretical formulation from [32]. Therefore,
the different scatterer as well as the solid object contribute
to the peak profile. This allows for modelling of occlusions
and a more physically accurate augmentation model. Fur-
thermore, [4] introduces a wet ground augmentation model
that models lost ground points due to the water film on the
road. This also allows to estimate the noise floor in a more
data-driven way compared to the heuristic one used in [36].
The authors of [37] suggest a physically sound method to
estimate both the attenuation and backscattering coefficient
to further improve the model proposed in [3].

Aside from physics-based models, empirical models can
also be used for augmentation. An empirical augmentation
method for spray whirled-up by other vehicles can be found
in [38]. This model is centered around the observation from
dedicated experiments that spray is organized into clusters.
Another data-driven approach is presented in [39], which
relies on spray scenes from the Waymo dataset. In [40], a
more computationally expensive spray augmentation method
is presented that relies on a renderer with a physics engine.

Finally, DL-based methods can be applied to adverse
weather augmentation. In [41], a Generative Adversarial Net-
works (GAN)-based approach inspired by image-to-image
translation is presented that is able to transform point clouds
from sunny to foggy or rainy conditions. They compare their



results qualitatively with real foggy and rainy point clouds
from a weather chamber.

However, assessing the quality and degree of realism
of the augmentation method is challenging. Some authors
use weather-chambers or other controlled environments that
allow for a comparison with real-world weather effects
[10], [27]. Furthermore, an augmentation method is often
considered realistic if it aids the perception performance
under real-world adverse weather conditions [42].

III. POINT CLOUD PROCESSING & DENOISING

In this section, we present approaches on how to deal
with adverse weather conditions which are sensor technique-
or point cloud-based, i.e. are independent of the actual per-
ception task. Thereby we analyze general sensor-dependent
weather robustness and the possibility to estimate the de-
gree of performance degradation depending on the weather
conditions. Furthermore, there are streams of research on
removing the weather-induced noise from the LiDAR point
clouds with both classical denoising methods and DL.

A. Sensor-related Weather Robustness

Depending on the technology, the characteristics and the
configuration, different LiDAR models are more or less in-
fluenced by the weather conditions [7], [8], [15], [43]. Due to
eye safety restrictions and the suppression of ambient light,
two operation wavelengths for LiDAR sensors prevailed:
905nm and 1550nm, with 905nm being the majority of the
available sensors. Yet, the 1550nm models appear to have
an improved visibility under heavy fog conditions, due to
the higher power emit [44]. For a thorough discussion on
LiDAR technologies under adverser weather conditions, we
refer to [17].

Furthermore, the performance Full Waveform LiDAR
(FWL) has been investigated under adverse weather condi-
tions [46]. FWL measures not only one or two returns but
all weaker returns, effectively measuring more noise but also
gathering more information about the surrounding. Despite
it requires high computational resources, FWL has proven
useful to analyse the surrounding medium, which can lay
the groundwork for understanding even changing conditions
and adjusting dynamically to them.

B. Sensor Degradation Estimation and Weather Classifica-
tion

As LiDAR sensors degrade differently under varying
weather conditions, estimating the degree of sensor degra-
dation is a first step towards dealing with corrupted LiDAR
point clouds. Effords have been made in developing methods
to better identify the sensing limits to prevent the propagation
of false detections into downstream tasks.

Firstly, some studies on characterizing sensor degradation
under various weather conditions [14], [43], [44] represent
a solid basis for sensor calibration under adverse weather
conditions and further development, although they are not yet
evaluated with regard to their weather classification abilities.

The first work to actually model the influence of rain on
the LiDAR sensor is presented in [33]. The authors present
a mathematical model derived from the LiDAR equation and
allow for a performance degradation estimation based on the
rain rate and maximum sensing range.

In subsequent research works, the estimation of the sensor
degradation under adverse weather conditions was formu-
lated as an anomaly detection task [47] and a validation
task [48]. The former employs a DL-based model which
aims to learn a latent representation that separates clear from
rainy LiDAR scans and thus is able to quantify the degree
of the performance decrease. The latter method suggests a
reinforcement learning (RL) model to determine failures in
an object detection and tracking model.

While the above-mentioned methods aim to quantify the
decrease in the sensor performance itself, another stream
of research focuses on the classification of the surrounding
weather conditions (i.e. clear, rain, fog and snow). Satisfying
results were achieved with the help of classical machine
learning methods (k-Nearest Neighbors and Support Vector
Machines) based on hand-crafted features3 from LiDAR
point clouds: [10] proposed a feature set to conduct point-
wise weather classification, a similar frame-wise approach
can be found in [49].

[51] developed a probabilistic model for frame-wise re-
gressions of the rain rate. With a mixture of experts they
accurately infer the rain rate from LiDAR point clouds.

It should be noted that most of the methods were trained
and evaluated on data collected in a weather chamber. While
the ability to carefully control the weather conditions allow
for high reproducibility, the data usually do not exactly reflect
real-world conditions. In order to assess each method’s
classification abilities, thorough studies on real-world data
are necessary [50].

C. Point Cloud Denoising

Weather effects reflect in LiDAR point clouds in terms
of specific noise patterns. As described in Section I, they
might affect factors like the number of measurements in
a point cloud and the maximum sensing range. Instead of
augmenting point clouds with weather-specific noise, the
point clouds can be denoised by various means in order to
reconstruct clear measurements. Additionally to classical fil-
ter algorithms, some works on DL-based denoising emerged
recently.

Besides applying perception tasks like object detection on
the denoised point clouds, metrics like precision (preserve
environmental features) and recall (filter out weather-induced
noise) are crucial to evaluate the performance of classical
filtering methods. To calculate these metrics, point-wise
labels are required which account for weather classes like
snow particles [26].

3The optimal feature set appear to depend on the sensing surface, i.e. the
feature set most suitable for classifications based on atmospheric regions
might not be the best choice for classifications based on street regions, and
vice versa [49], [50]



Radius Outlier Removal (ROR) filters out noise based
on any point’s neighborhood. This becomes problematic for
LiDAR measurements of distant objects, as the point cloud
becomes naturally sparse. Advanced methods solve this by
dynamically adjusting the threshold as a function of the
sensing distance (Dynamic Radius Outlier Removal (DROR),
[52], [53]) or taking into account the average distance to
each point’s neighbors within the point cloud (Statistical Out-
lier Removal (SOR)). Both methods exhibit high runtimes,
making them hardly applicable in autonomous driving. The
Fast Cluster Statistical Outlier Removal (FCSOR) [54] and
the Dynamic Statistical Outlier Removal (DSOR) [26] both
suggest methods to lower the computational load while still
removing weather artifacts from point clouds.

A thorough analysis revealed that weather-induced mea-
surement errors are associated with high density, low in-
tensity, close range and fast decay of points [55]. Ad-
ditionally to weather-characteristic neighborhood features,
the Low-Intensity Outlier Removal (LIOR) [56] and the
Dynamic Distance-Intensity Outlier Removal (DDIOR) [55]
algorithms take measurement intensity into account to re-
move weather-induced artifacts. The former one utilizes
assumptions about the particle size and manually tuned
”snow-intensity” threshold, while the latter one aims to
unite multiple of the existing filtering ideas into a more
sophisticated version. It keeps the computational costs low
with the help of a pre-filtering step and achieves compelling
results on snowy LiDAR scans.

Denoising methods for roadside LiDARs rely on back-
ground models from historical data (which is available for
stationary roadside sensors) to identify dynamic points in
combination with basic principles used in classical denoising
[57], [58]. While [57] filters the weather noise from the actual
objects with the help of intensity thresholds (compare [56]),
[58] filters outliers based on the characteristic local density
(compare [52]). Unfortunately, this is not easily applicable
to LiDAR sensors mounted on moving vehicles.

Contrary to classical denoising methods, DL-based de-
noising of LiDAR point clouds became popular due to the
model’s abilities to directly understand the underlying struc-
ture of weather-induced noise: Firstly, Convolutional Neural
Network (CNN)-based models have been used for efficient
weather denoising [59], [60], [61]. The use of temporal data
to distinguish further leverages the weather-specific noise
removal [62], because naturally, the weather noise changes
in a higher frequency than the scene background and even
the objects within that scene. CNN-based approaches (espe-
cially voxel-based) outperform classical denoising methods
in terms of noise filtering. Additionally, they have a lower
inference time due to faster GPU computations [60].

Additional to the supervised CNN methods, unsupervised
methods like CycleGANs are able to turn noisy point cloud
inputs into clear LiDAR scans [60]. Yet, they remain noisy
in their nature and the resulting point clouds can hardly be
validated with respect to their realism [63].

IV. ROBUST LIDAR PERCEPTION

While there are promising efforts in reducing the domain
shift introduced through adverse weather, there are multiple
possible approaches on making LiDAR perception models
more robust towards adverse weather conditions, indepen-
dently of the quality and the noise level of the data. There are
three streams of work here: utilizing sensor fusion, enhancing
training by data augmentation with weather-specific noise,
or general approaches on model robustness against domain
shifts to compensate performance decrease.

It should be noted that sensor fusion approaches are the
only ones tackling multiple perception tasks besides object
detection. To the best of our knowledge, there is no literature
on other perception tasks like semantic segmentation.

A. Combating Adverse Weather with Sensor Fusion

Generally it can be said, that every sensor in an au-
tonomous driving sensor set has its strengths and weaknesses.
The most common sensors within such sensor sets are RGB
cameras, radars and LiDARs. As discussed in Section I,
the LiDAR perception suffers when encountering visible
airborne particles like dust, rain, snow or fog. Cameras
are more sensitive to strong light incidence and blooming
effects. The radar in turn is affected by neither but lacks the
capability to detect static objects and finer structures. Thus,
it imposes itself to fuse different sensors in order to alleviate
their respective shortcomings under different surrounding
conditions and facilitate a robust perception.

Early works on sensor fusion for combating the adverse
effect of weather on sensor perception concentrate on the de-
velopment of robust data association frameworks [64], [65].
More recent research streams utilize DL-based approaches
for robust multi-modal perception and mainly address the
question of early vs. late fusion to achieve robustness under
adverse weather conditions.

The answer to the question whether to prefer early or
late fusion seems to be governed by the choice of the
sensors, the data representation, and the expected failure
rates. Provided that not all fused sensors are degraded equally
and at least one of them is fully functional, late fusion
appears to outperform early fusion [66], [67], [68]. In that
case, the model has the ability to treat the sensor streams
independently, it is able to rely on the working sensor and
ignore the failing one. Contrary, an early fusion of e.g. radar
and LiDAR depth maps helps to filter out false detections in
order to achieve clean scans [69] 4.

The data representation is another factor that partially
contributes to answering the question of early vs. late fusion.
The Birds Eye View (BEV) of the LiDAR sensor greatly
facilitates object detection by improved obejct distinguisha-
bility. Thus, any model that has learned to rely on the
respective LiDAR features will suffer from a performance
loss when the LiDAR data is corrupted [70]. Complete sensor

4Although this work does not explicitly take adverse weather into account,
it evaluates the proposed approaches on haze and mist.



failure has successfully been combated by utilizing teacher-
student networks [71].

Ultimately, some sensor fusion approaches rely on com-
bining early and late fusion into one model and exploit
concepts like temporal data and region-based fusion [72]
or attention maps [73]. Another possibility is the adaptive,
entropy-steered fusion proposed in [21].

Besides the predictive performance, model runtime should
also be taken into consideration when developing novel
perception approaches [72]. [68] introduced a new metric
which incorporates the predictive performance for drivable
space segmentation with the inference runtime. Interestingly,
the LiDAR-only model scored best on that metric.

Undoubtedly, it is convenient to compensate sensor failure
under adverse weather conditions with unaffected sensors5.
Yet, by striving for improving the LiDAR-only perception
under adverse weather conditions, safety-critical applications
like autonomous driving can become even more reliable.

B. Enhancing Training with Data Augmentation

While data augmentation is widely used in DL training
strategies, it is the creation of specific weather noise which
is particularly challenging. Section II-B presented a variety of
methods to generate weather-specific noise in LiDAR point
clouds. Utilizing data augmentation during the training of a
perception model is the diametrical method of point cloud
denoising, which has been discussed in III-C. Instead of
removing the weather-induced noise, the aim is to make
the model accustomed to that exact noise. It has been
demonstrated that weather augmentation is more effective
than denoising in terms of robustness, which gives valuable
hints on which research direction should be emphasized in
the future [4].

Generally, several works demonstrate the benefits of such
data augmentation at training time by evaluating them on the
task 3D object detection [3], [4], [36].

Many works address the subject of choosing the best
feature extractor for robust LiDAR perception under adverse
weather conditions. Point-based and voxelizing methods ap-
pear to be less affected by the augmented weather effects
[3], [4], [36], at least for object detection, hinting that
some robustness can be achieved by carefully choosing the
perception model. Also, there seems to be an interaction
between the model architecture and the kind of point cloud
corruption due to adverse weather. The wet ground extension
presented in [4] only aids some models, indicating that the
detection problems caused by ray scattering are more or less
grave, depending on the model architecture.

Furthermore, the size and shape of objects seem to play
a role in the degree of any detection model’s performance
degradation [3], [4], [75]. That means, smaller and underrep-
resented classes (like cyclist in the STF dataset) suffer more
from the weather augmentation than well-represented classes,
like car and pedestrian. Thus, the number of annotated
objects in the (clear) training set is a good indicator on

5[74] proposes optimized sensor setups

the object detection performance even under adverse weather
conditions. This indicates that not only training with weather
augmentation aids the detection performance under clear
weather conditions [4], interestingly, it also appears to work
inversely [75].

C. Robust Perception Algorithms

While fusion methods with complementary sensors alle-
viate the weather-induced performance degradation of each
single sensor, they only act as a workaround for the actual
problem at hand. Changes in the weather conditions can be
seen as a special case of domain shift [76], thus approaches
developed to bridge domain gaps might be applied to the
weather-to-weather (e.g. clear-to-rain/fog/snow) domain shift
6. Since there are no extensive datasets adressing the weather-
to-weather domain shift only, it can be evaluated as part
of the dataset-to-dataset domain shift. Thus, two works on
developing robust LiDAR pereption algorithms indirectly
evaluate the performance under adverse weather conditions.
While the works provide interesting insights into the problem
at hand, it should be noted, that since the domain gap was not
limited to the shift between weather conditions, other factors
like sensor resolution and label strategy might overshadow
the weather-induced gap. Thus, in the evaluation it is unclear
which elements of the model attribute to the shift in the
weather condition itself, since the dataset-to-dataset shift is
very strong.

[78] employ a teacher-student-setup for object detection
where the teacher is trained on Waymo Open (sunny) to
generate labels for part Waymo Open, part Kirkland (rainy),
student is trained on all label and applied to Kirkland.
Interestingly, the students appeared to generalize better to the
target domain, indicating that they were able to cope with
the adverse weather. The authors of [79] proposed to robust
object detection pipeline including attention mechanisms and
global context-aware feature extraction which allows the
model to ignore weather-induced noise and at the same
time, understand a whole scene. While their methods fail
to perform well on two domains simultaneously (KITTI,
sunny & CADC, rainy), a joint training based on a maximum
discrepancy loss yields promising results and shows high
performances on both source and target domain.

[80] focuses on alleviating weather-induced sensor degra-
dation for both RGB camera and LiDAR. Although they
utilize sensor fusion (derived from the entropy fusion pre-
sented in [21]) as well as data augmentation for both
sensors, their work strongly contributes towards exploiting
a set of methods to bridge the gap to multiple unknown
target domains for object detection. They achieve this by
introducing domain discriminators and domain alignment by
self-supervised learning through a pre-training strategy. Their
results show that their multi-modal, multi-target domain
adaptation method is able to generalize well to e.g. fog
scenarios.

6[77] gives a comprehensive overview over the current state of the art
domain adaptation methods, but they mainly tackle problems related to
different sensor resolutions or the available data and their labels.



V. DISCUSSION AND CONCLUSION

In this survey paper we outlined current research directions
in LiDAR-based environment perception for autonomous
driving in adverse weather conditions. We thoroughly an-
alyzed and discussed the availability of training data for
deep learning algorithms, perception-independent point cloud
processing techniques for detecting weather conditions and
denoising the LiDAR scans, and finally, current state-of-the-
art approaches on robust LiDAR perception. In the following,
we will summarize most promising research directions and
identify remaining gaps.

Adverse Weather Data (Section II): There are several
autonomous driving datasets which include LiDAR sensors
and simultaneously cover adverse weather conditions. Most
of them provide object labels, but only one has point-wise
class labels. There clearly is a need for appropriate real-world
datasets to train and validate the growing amount of deep
learning based LiDAR perception algorithms. Some works
resort to weather-specific data augmentation to simulate
adverse weather effects, yet, a method to evaluate the realism
of the generated augmentations is missing.

Point Cloud Processing & Denoising (Section III): Distinct
LiDAR technologies react differently to adverse weather
conditions. While thorough studies on sensor degradation
under adverse weather conditions exist, a systematic analysis
of the impact on perception algorithms is missing. Here,
approaches on sensor degradation estimation will be useful.
Furtheremore, there is ongoing research on cloud denoising,
but existing statistical methods have been proven less ef-
ficient than utilizing weather augmentation during training.
Modern methods like CNN- or GAN-based approaches might
bridge that gap.

Robust LiDAR Perception (Section IV): A large body of
research focuses on alleviating sensor degradation with the
help of sensor fusion. While this yields compelling results,
improving the LiDAR-only perception under adverse weather
conditions should not be neglected. Sophisticated domain
adaptation approaches (like anomaly detection or uncertainty
modeling) might be useful to address that matter. Viewing the
presence of weather-induced noise in LiDAR point clouds
from different perspectives might unlock novel streams of
research on bridging the domain gap introduced by adverse
weather conditions. Investigating the quality of that domain
gap would give hints on the potential of general domain
adaptation approaches.
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