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Abstract—In this work, we propose an extension of conven-
tional image data by an additional channel in which the associ-
ated projection properties are encoded. This addresses the issue
of sensor-dependent object representation in projection-based
sensors, such as LiDAR, which can lead to distorted physical
and geometric properties due to variations in sensor resolution
and field of view. To that end, we propose an architecture for
processing this data in an instance segmentation framework. We
focus specifically on LiDAR as a key sensor modality for machine
vision tasks and highly automated driving (HAD). Through
an experimental setup in a controlled synthetic environment,
we identify a bias on sensor resolution and field of view and
demonstrate that our proposed method can reduce said bias for
the task of LiDAR instance segmentation. Furthermore, we define
our method such that it can be applied to other projection-
based sensors, such as cameras. To promote transparency, we
make our code and dataset publicly available. This method shows
the potential to improve performance and robustness in various
machine vision tasks that utilize projection-based sensors.

Fig. 1: Visual Abstract: Instance segmentation of a LiDAR
scan.

I. INTRODUCTION

This work aims to address the problem of generalizing a
machine learning model, specifically instance segmentation,
trained on data from a single sensor or a collection of sensors,
to new sensors with different characteristics, such as field of
view and resolution. The motivation behind this research is
the fact that a wide variety of sensors with different properties
are integrated into many products, and the functionalities and
capabilities of these products heavily depend on the sensors
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(a) LiDAR Scan. (b) Spherical Projection.

Fig. 2: Simulated LiDAR scans of a pedestrian at different
fields of view and vertical resolutions at the distances 10 m,
20 m, and 40 m, in yellow, green, and blue, respectively (left).
Spherical projections of those scans (right).

used. This means that new sensors will be continuously
introduced as they become available.

One important application for this research is in the field of
autonomous vehicles, specifically in creating a scene under-
standing from sensor data using segmentation, which assigns
a class and instance label to each data point, such as a 3D
point of a LiDAR scan or a pixel of a camera image as
shown in Figure 1. Autonomous driving perception modules
usually consist of data-driven models based on sensor data, but
these models may be biased toward the sensor used for data
acquisition, which can seriously impair the transferability of
the perception models to new sensor setups.

For LiDAR sensors, in particular, numerous manufacturers
have emerged in recent years, adding new technologies and
sensors to the market. Various previous approaches have
projected a LiDAR 3D point cloud onto a 2D spherical range
image using efficient 2D convolutional operations and archi-
tectures for image segmentation. We propose using deflection
metric to solve the problem of transferring machine learning
model from a single sensor to new sensors.

A. Problem Statement and Intuition

LiDAR point clouds are unstructured and sparse. As the
distance between the sensor and the object increases, the num-
ber of measurement points on the object decreases, making it
difficult for machine learning models to accurately detect and
classify the object. Mainly because it’s hard to find connected
components in an unstructured point cloud at different levels
of sparsity. The level of sparsity is further compounded by the
sensor’s Field of View (FoV), vertical resolution, and azimuth
resolution. In Figure 2 this is shown for a person distanced 10
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m, 20 m, and 40 m from sensors with differences in resolution
and field of view.

With spherical projections of LiDAR scans are considered.
Instead of becoming sparse, the size of the object changes
in pixel space Figure 2. Thus, relaxing the issue of dealing
with lack of structure and sparsity to the issue of dealing with
different scales in pixel space.

B. Related Work

For image data, there is some preliminary work, addressing
the problems stated in subsection I-A: Liu et al. introduce
CoordConvs [9], as a solution for the coordinate transform
problem. The convolution itself is spatial invariant. However,
for some tasks, spatial variance might be needed. In object
detection, for example, the coordinate transform problem
arises from processing features in pixel space and output
bounding boxes in cartesian space. A CoordConv layer is
a simple extension of the standard convolutional layer. It
has the same functional signature as a convolutional layer,
but utilizes extra channels for the incoming representation.
These channels contain hard-coded coordinates, the most basic
version of which is one channel for the u coordinate and one
for the v coordinate. The authors claim that the CoordConv
layer keeps the properties of few parameters and efficient
computation from convolutions, but allows the network to
learn if spatial variance or invariance is needed for learning
the task. This is useful for coordinating transform-based tasks
where regular convolutions can fail. However, the authors
proved their concept on simplified tasks.

Wang et al. [13] [12] utilize the CoordConv concept as
a component in an instance segmentation framework. The
authors argue that spatially variant convolutions are necessary
for instance segmentation, which is related to semantic seg-
mentation. Furthermore, they concluded that few CoordConv
layers within the backbone are enough to achieve this.

Facil et al. teach camera-aware multi-scale convolutions for
depth estimation from image data [4] supplied to a neural
network. The method comprises pre-computing pixel-wise
coordinates and horizontal and vertical field-of-view maps, fed
with input features to a convolution operation. These maps
are supplied to the neural network with different resolutions
and on different layers to allow the network to learn and
predict depth patterns that depend on the camera calibration.
The authors conclude that the neural network supplied with
the respective maps can generalize over camera intrinsics and
allow depth prediction networks to be camera-independent.
This work can be seen as the work being most closely related
to our approach. Even if this method can be adapted for image
data in general, it utilizes four additional channels exclusively
designed for camera sensors.

In order to process LiDAR data with such a method, the
data must first be converted into an image representation.
Many works exist that convert LiDAR point clouds into images
through a spherical projection. The SemanticKITTI benchmark
[1] and RangeNet [10] have contributed significantly to this
development. The elegance of spherical projection is that

LiDAR data can be processed similarly to camera data with
a Convolutional Neural Network (CNN). This also includes a
significant improvement in runtime when processing LiDAR
data. Methods such as Lite-HDSeg [11], SalsaNext [2], or
SqueezeSeg [14] all consider spherical projections and propose
different architectures for processing.

In [6] the authors present a boundary-aware domain adapta-
tion model for LiDAR scan full-scene semantic segmentation.
Their method considers boundary information while learning
to predict full-scene semantic segmentation labels. They also
use spherical projection of LiDAR data and demonstrate the
adaption of their model to different sensors. They mainly use
sensors with similar resolutions. In this respect, they do not
address the problems we state in subsection I-A.

C. Main Contributions

This paper presents a novel approach for encoding the
projection properties of a sensor in an image representation
called the deflection metric. The deflection metric is a one-
channel image that can resolve ambiguities in the projection
and homogenize data from various sensors.

To demonstrate the effectiveness of the deflection metric,
we propose a backbone architecture based on Faster-RCNN
and a spherical projection model for spinning LiDAR sensors,
adapted from the pinhole camera model. Combined with range
information the deflection metric can define a 3D coordinate
system suitable for processing with CNNs.

We conducted experiments using a high-resolution LiDAR
dataset generated with the CARLA [3] simulator. To evaluate
the transfer ability of our method and conduct an ablation
study to confirm its usability on sensors with different fields
of view.

For transparency and reproducibility, we also included the
source code for the data generation process, training and
evaluation of our models, and a collection of pre-trained
models.

II. METHOD

Our method aims to address the issue of ambiguity and dis-
tortion in images by providing additional knowledge about the
sensor used to capture the image. This additional information
is encoded in a deflection metric, which can be interpreted or
processed by a CNN.

First, we define the deflection metric, which encodes the
projection properties of a sensor, such as the sensor’s field
of view and distortion. This is done by creating a spherical
projection of the sensor data, and transforming it into an image
representation (see sections subsection II-A and II-B).

Second, we show how the deflection metric is provided as
input to a state-of-the-art object detection and instance seg-
mentation architecture (see subsection II-C), which enables the
CNN to better understand the image, reducing the ambiguities
in scale and distortions.



A. Spherical Projection

There has been a growing interest in using spherical pro-
jections for LiDAR instance segmentation in recent years.
Spherical projections offer several advantages, such as being
able to capture the full 360-degree field of view and being
able to maintain consistent point density across the whole
projection.

Fig. 3: Coordinate system of a spinning LiDAR. φ as the
azimuth angle and θ as an inclination angle from the xy-plane.

The process of projecting point clouds from a spinning
LiDAR sensor into a spherical image involves converting the
Cartesian coordinates of the measurement points into spherical
coordinates. Specifically, the process converts each point in the
point cloud represented by its Cartesian coordinates [x, y, z]T ,
into spherical coordinates represented by [phi, theta, r]T . This
conversion is illustrated in Fig. 3. The phi coordinate corre-
sponds to the angle of the point in the XY plane, theta is
the angle from the positive Z-axis, and r is the distance from
the origin. This spherical projection is a way to capture the
geometry of the sensor in a single image. Subsequently, we use
the following projection model to generate a spherical range
image: uv

1
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(1)

Analogous to the projection model of pinhole cameras, the
projection matrix K describes a discretization 4φ,4θ along
the angles φ, θ and a shift of the center coordinates cφ, cθ
defined by the height and width of the resulting image. Since
the discretization can cause several points to be projected onto
one pixel, we only use the points with the smallest Euclidean
distance r to the sensor. For a conventional spinning LiDAR
sensor, the image height h and width w will be equivalent to
the number of layers and azimuth increments, respectively, as
displayed in Fig. 4.

With the spherical projection, an image representation I can
be constructed. Points from a 3D point cloud and auxiliary
data can be projected to this ordered image representation.
They result in several images for a LiDAR scan. E.g. Ir for
the Euclidean distance.

Fig. 4: Spherical image I with principal point P , height h,
width w.
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Fig. 5: Deflection metric α: is calculated as an angle between
the optical axis, defined by a sensor’s origin C and a principal
point P , and a pixel ~u = [u, v]T .

B. Deflection Metric

With the deflection metric, as shown in Figure 5, we propose
a method to encode the geometric characteristics of a sensor
alongside its data. We do this using a deflection image Iα,
which encodes an inclination angle α in every pixel as a one
channel image. α provides a consistent relation between a
projected 3D point and the position of this 3D point in relation
to the sensor and is, therefore, compatible among sensors with
different characteristics. The deflection metric α is defined
as an angle between the optical axis, defined by a sensor’s
origin C and a principal point P , and a pixel ~u = [u, v]T . α
essentially describes half the field of view at a pixel position
~u.

The projection can be modeled by a sensor model and
parameterized by linear or nonlinear sensor intrinsics. This
intrinsics can be calculated based on the constituents of the
projection system, e.g., the position and properties of lenses
and apertures, measured in an optical setup or estimated by
calibration.

Based on a parameterized sensor model, the deflection
metric α for a pixel position ~u can be determined by the
sensor’s intrinsic matrix K. Based on the image coordinates,
α of a pixel ~u with respect to the projection center P can be



determined:

α(~u) =

√
[K−1~u]T [K−1~u]− 1 (2)

All the same values of the deflection metric α are arranged on
a circle or ellipse e (see dashed circle in Figure 5) in image
data. From α(~u) a normed distance d(~u), such that the distance
between sensor center C and principal point P is one, can be
calculated by d(~u) = tan(α(~u)). We would like to emphasize
that due to the change of coordinates to spherical coordinates,
Equation 2 does not calculate the α(~u) when using a camera
intrinsic matrix K, but the normalized distance d(~u). To obtain
α(~u) for a camera sensor, the inverse trigonometric function
α(~u) = arctan(d(~u)) has to be used.

The deflection image Iα is a one-channel image, in which
every pixel ~u is aligned with the data image I . This increases
the information content of each pixel by the geometric sensor
properties. The deflection image Iα can be processed together
with the sensor data by convolutional layers of a CNN. Unlike
image data, the deflection image is not invariant to translation,
rotation, and scale. However, since the convolutional layers
of CNNs are learned, a CNN can decide whether to use
this additional information in the learning process. The range
image Ir and the deflection image Iα are components of a
3D coordinate system and designed to be processable with
convolutional filters.

C. Top-Down Injection
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Fig. 6: Backbone Architecture. The deflection metric is in-
jected before every pyramid stage. ↓ 2 denotes a down-sample
operation, ↑ 2 denotes an up-sample operation,

⊕
denotes a

channel wise concatenation.

An existing backbone meta-architecture is modified to inject
the deflection metric into the model at the input and selected
locations. Based on the findings in [13] [12] we decided to
use a ResNet50-FPN. The modification to the ResNet-FPN is
shown in Figure 6. At the input stage, the deflection image
Iα is concatenated with a three-channel image I , resulting in
an input shape of h × w × 4. The image input is processed

top-down in five down-sampling stages. Each stage halves
the height h and width w. This is done for the image data
using strided convolutions, followed by a residual block (C1
to C5). The deflection image Iα is down-sampled in parallel
and concatenated to the features of the stages C1 to C5.
This ensures that the feature map can be used in every stage.
After the injection, a 1 × 1-convolution is used to fuse the
features of the stage with the deflection metric. This allows
the network to keep or discard the deflection metric for a
particular stage. The feature maps are up-sampled from the
bottom up prior to a fusion with the pristine feature map from
the respective stages. The fusion is performed by a channel-
wise concatenation of the feature maps and a subsequent
3 × 3-convolution for anti-aliasing, as with common FPN
architectures. This results in the pyramid stages P with the
respective shapes (h/2i)× (w/2i)× 256 (i denotes the stage
index). The pyramid stages are then fed into a semantic
segmentation head, as described in [8].

D. Data Augmentation

This section discusses the use of image augmentation in the
training process of the proposed method. Image augmentation
is a technique of altering the existing data to create more data
for the model, which is especially important when the training
data comes from a single sensor source, but the model should
work sensor equivariant.

The proposed method uses geometric image-based opera-
tions to augment both the range image and the deflection im-
age. The operations used are resize and center-crop. The resize
operation changes the resolution of the sensor, and the center-
crop operation changes the field of view. The combination of
both allows the simulation of various sensors during training.
It’s worth noting that with this kind of augmentation, only
sensors with an equal or smaller field of view and resolution
can be simulated.

In the context of LiDAR semantic segmentation, the aug-
mentation process modifies the vertical and azimuthal reso-
lution of the sensor, as well as the vertical field of view.
This helps the model learn to generalize to new sensor
configurations.

III. EXPERIMENT

A. Dataset

Data Generation We used the CARLA simulator for data
generation. In CARLA we simulated an ultra-high resolution
LiDAR with full dome coverage, mounted to a carrier vehicle,
resulting in dense point clouds with semantic segmentations,
instance segmentations, cuboids, and meta information. For the
instance segmentation, we consider three classes of road user
C ∈ {pedestrian, vehicle, two-wheeler}. Our simulated high-
resolution LiDAR is beyond current commercially available
sensors in terms of resolution and FoV. However, we can
generate LiDAR sensors with more reasonable parameters
regarding resolution and field of view from the high-resolution
LiDAR, while maintaining initial conditions like semantic
context, giving us a controlled environment for our experiment.



We generate our simulated LiDAR frames at a frame rate of
1 Hz so that two consecutive frames do not look too similar.
We also chunked our dataset into scenes of 100 frames. For
each scene, we altered the simulation location (i. e. map),
the initial parameters for traffic simulation (e.g. amount, type,
and behavior of other road users), the carrier vehicle, and its
trajectory. This totals 24 sequences, from which we use 15 as
training data and 9 for testing. In addition, we ensured that
the carrier vehicle and the simulation location differed in the
test and train sequences. The high-resolution LiDAR scans
consist of a vertical FoV of fv = 180◦, a horizontal FoV of
fh = 360◦, the number of azimuth increments w = 2048,
and the number of horizontal layers h = 1024. This results
in a spherical projected range image Ir (as described in
subsection II-A) with a resolution 1024× 2048.

(a) Point Cloud.

(b) Spherical Projection.

Fig. 7: Example frame with instance labels of the simulated
high-resolution LiDAR.

B. Setup

Implementation details: We implemented our method in
Detectron2 [15] and used their reference implementations.
For training, we used a single NVIDIA 3090 TI GPU. For the
instance segmentation, we use MaskRCNN [5] and PointRend
[7] as application head. For the backbone, we modified a
ResNet-50 FPN as described in subsection II-C. All models
were trained until convergence.

Evaluation and Metrics: We use mean average recall
(mAR) as defined in COCO. We prefer mAR over mean
average precision (mAP) since it indicates how many objects
are correctly detected. A higher recall is preferable for
downstream tasks like object tracking since removing false

positive detection over time is easier than adding missed
detections.

Experimental Setup: In the following, we describe our
experimental design to test our method’s generalizability to
sensors with other characteristics (e.g. FoV and resolution).
We projected the high resolution LiDAR scans and instance
labels to sensors with different characteristics. We mainly
changed the number of azimuth increments, the number of hor-
izontal layers, and the vertical FoV to w ∈ {512, 1024, 2048},
h ∈ {32, 64, 128}, and fv ∈ {22.5◦, 45◦, 90◦} respectively.
We use the spherical projection described in subsection II-A
to project the point clouds to the image representation I . We
then resize the projected image I accordingly to h and w.
In this way, we reproduce sensors that are currently on the
market. Currently, spinning LiDAR with a vertical resolution
of 128 and a horizontal resolution of 2048 from manufacturers
such as Ouster or Velodyne represent the commercial state
of the art. However, these are currently still expensive, and
if this aspect and also the required runtime are taken into
account, sensors with lower resolution are also relevant for
research and industrial applications. However, sensors with a
lower resolution can be augmented from these high-resolution
sensors at any time. This is not possible with FoV. For real
world data acquisition, we recommend to use high resolution
sensors if possible.

C. Ablation Study

In ablation, we study the impact of the deflection metric
and data augmentation, focusing on modifications in FoV. As
our baselines, we use ResNet-50 with FPN, MaskRCNN, and
PointRend as application head exclusively trained on a single
vertical FoV fv ∈ {22.5◦, 45◦, 90◦} , which we further denote
as R22.5◦ , R45◦ , and R90◦ respectively. We also train this
model with augmentation, further denoted as RA. Our model,
as described in section II is further denoted as DRA and
also trained with augmentation. For the augmentation of RA
and DRA, we random change the w ∈ {512, 1024, 2048},
h ∈ {32, 64, 128}, and fv ∈ {22.5◦, 45◦, 90◦} during training.
For R22.5◦ , R45◦ , and R90◦ we only augment h and w. We
refrain from training a model for each resolution to limit the
scope of this work. For testing, we used the sequences from
the test set and generated a small test set for each sequence at
each resolution and field of view from w, h, and fv , totaling
243 small test sets. We calculate the mAR for every subset.
In Figure 8 the distribution of mAR over those small test
sets for the considered models can be seen as box plots. We
display the mAR over the complete dataset and exclusively
for the subsets with 22.5◦, 45◦, and 90◦ FoV, respectively.
While there is some noticeable spread over mAR over the
complete dataset for each model, we can see that the median
mAR for the models R22.5◦ , R45◦ , and R90◦ (marked as an
indent in the box plots) is low, the median mAR for RA
is noticeably better, and the median mAR of DRA is even
better. This indicates a limitation of R22.5◦ , R45◦ , and R90◦

to transfer to data captured from sensors with different FoVs.
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Fig. 8: Distribution over Mean Average Recall.

Furthermore, in the experiments in which we exclusively
test the performance on a single FoV we can see that there
are general differences in the mAR concerning the FoV. We
assume this is due to the size of the objects in pixel space.
Objects appear smaller at a larger FoV, and the smaller an
object is, the harder it is to detect it. The models that are
exclusively trained on the evaluated FoV tend to work well,
while those trained on other FoVs have a significantly lower
mAR. It is noticeable that RA seems to generalize but cannot
catch up with the mAR of the models exclusively trained on
the evaluated FoV. On the other hand, DRA achieves a slightly
better mAR for each FoV under consideration compared to
the models trained exclusively on the FoV under consideration.

Discussion:
We showed in our experiment that using data from a single

LiDAR sensor source for training might bias an instance
segmentation model when applying the model to data from
novel sensors with different FoVs. Using data from various
sensors as simulated by the augmentation in RA can increase
the capability of a model to generalize. However, it is not
possible to use the full potential of data from multiple sensors.
The experiment shows that our method DRA can help to
generalize over various sensors without sacrificing quality
compared to the sensor specific models.

We neglect some sensor effects by using simulated and
idealized data. Nevertheless, we interpret our results so that
our method can contribute to achieving sensor equivariance.
Beyond our method, annotated data from multiple sensors
and suitable augmentation strategies are needed for real world
applications.

IV. CONCLUSIONS AND FUTURE WORK

With this work, we presented a spherical projection model,
a deflection metric, which can be used to encode geometric
sensor properties to a projected image, and an architecture for
joint processing of projected images and the deflection metric.
The deflection metric is simple and thus efficient without
incurring any additional computational requirements. In our
experiment, we evaluated the usability of our method for the
considered use case.

Since our method is suitable for processing LiDAR data and
other sensors such as cameras, we would also like to consider
other sensors and further use cases, as well as real-world data,
to identify and relax the limitations of our approach.
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